Class 12 Chemistry Chapter 7 p-Block elements

Group-15 Elements

- \triangleright Group-15 is also known as pnictogens or nitrogen family. It contains nitrogen (N), phosphorous (P), arsenic (As), antimony (Sb), bismuth (Bi) and moscovium (Mc).
- \triangleright As we move from up to down the group metallic characters increases. As N and P are non-metals, As and Sb are metalloids, Bi and Mc are metals.

Occurrence:

- \geq 78% by volume of the atmosphere is comprises by molecular nitrogen.
- \triangleright In the earth's crust, nitogen found as NaNO₃ or Chile saltpeter and KNO₃ or Indian saltpetre.
- \triangleright Nitrogen in main component of amino acids.
- \triangleright Phosphorous in main component of rocks, it is found as apatite i.e. fluorapatite.
- \triangleright Phosphorous is present in bones as well as in tooth enamel. It is present in milk and eggs as phosphoprotein.
- \triangleright As, Sb and Bi are found mainly as sulphide compounds in nature. Mc is a synthetic radioactive element with atomic number 115, atomic mass 289. It's half-life is very short.

Property	N	P	As	Sb	Bi
Atomic Number	7	15	33	51	83
Atomic mass/g $mol-1$	14.01	30.97	74.92	121.75	208.98
Electronic	$[He]2s^22p^3$	[Ne] $3s23p3$	$[Ar]3d^{10}$	$[Kr]$ 4d ¹⁰	$[Xe]4f^{14}$
configuration			$4s^24p^3$	$5s^25p^3$	$5d^{10}$
					$6s^26p^3$
Ionisation	1402	1012	947	834	703
enthalpy-I					
Ш	2856	1903	1798	1596	1610
\mathbf{III}	4577	2910	2736	2443	2466
Electronegativity	3.0	2.1	2.0	1.9	1.9
Covalent radius	70	110	121	141	148

Table: Atomic and Physical Properties of Group 15 Elements

Electronic Configuration

 \triangleright The valence shell electronic configuration of nitrogen family is ns² np³. The s-orbital is fully filled and p-orbitals are half-filled, which stabilize the electronic configuration.

Atomic and Ionic radius

- \triangleright As we move down the group covalent and ionic radii increase in size. There is a significant increase in covalent radius from N to P.
- ➢ From Arsenic to Bismuth a small increase in covalent radius is noticed. This is owing to the presence of completely filled d or f orbitals in higher members.

Ionization enthalpy

- \triangleright As we move down the group Ionisation enthalpy decreases due to gradual increase in atomic size. As a consequence of the extra stable half-filled p-orbitals electronic configuration and smaller size, the ionisation enthalpy of the group 15 elements is much greater than that of group 14 elements in the parallel periods.
- \triangleright The order of successive ionisation enthalpies is Δ_iH₁ < Δ_iH₂ < Δ_iH₃.

Electronegativity

 \triangleright As we move down the group the electronegativity value decreases with increase in atomic size.

Physical properties

- \triangleright All the elements of 15-group are polyatomic.
- \triangleright N₂ is a diatomic gas while all others are solids. As we move down the group metallic character increases. N and P are non-metals, As and Sb

metalloids and Bi is a metal, because of decrease in ionisation enthalpy and increase in atomic size.

 \triangleright The boiling points increase as we move from top to bottom in the group but the melting point increases up to As and then decreases up to Bi. All the elements show allotropy except N.

Chemical properties:

Oxidation states and trends in chemical reactivity

- \triangleright The common oxidation states of Nitrogen family are -3 , +3 and +5.
- \triangleright The tendency to show -3 oxidation state decreases as we move down the group because of increase in size and metallic character.
- \triangleright Bi barely forms any compound in -3 oxidation state.
- \triangleright The stability of +5 oxidation state decreases as we move down the group. The only known Bi (V) compound is BIF_5 . The stability +3 state increases due to inert pair effect as we move down the group.
- \triangleright In addition to +5 oxidation state, nitrogen exhibits + 1, + 2, + 4 oxidation states also when it reacts with oxygen.
- \triangleright Nitrogen does not have d-orbitals to accommodate electrons from other elements to form bonds so it does not form compounds in +5 oxidation state with halogens.
- \triangleright Phosphorus also shows $+1$ and $+4$ oxidation states in some oxoacids.
- \triangleright All oxidation states from +1 to +4 tend to disproportionate in acid solution in case of nitrogen.
- ➢ Example:

$$
3HNO2 \rightarrow HNO3 + H2O + 2NO
$$

- \triangleright All intermediate oxidation states disproportionate into +5 and -3 both in alkali and acid in case of phosphorus.
- \triangleright On the other hand +3 oxidation state in case of As, Sb and Bi becomes increasingly stable with respect to disproportionation.
- \triangleright Nitrogen is restricted to a maximum covalency of 4 as only four i.e. one s and three p-orbitals are available for bonding.

 \triangleright The heavy elements of group-15 have vacant d-orbitals in the outermost shell which is used for bonding and through this they can expand their covalence for example in PF⁻⁶.

Anomalous properties of nitrogen

- ➢ Nitrogen is different from the rest of the members of 15-group due to having small size, high electronegativity, high ionisation enthalpy and unavailability of d-orbitals.
- \triangleright Nitrogen has exceptional ability to form $p\pi$ - $p\pi$ multiple bonds with itself and with other elements having small size and high electronegativity (like C, O).
- ➢ Nitrogen exists as a diatomic molecule with a triple bond (N≡N) i.e. one sigma and two pie bond between the two atoms. Its bond enthalpy is 941.4 kJ mol-1 which is very high.
- \triangleright Heavier elements of this group do not form $p\pi$ -p π bonds as their atomic orbitals are so large and because of that they cannot have effective overlapping.
- \triangleright On the other hand, phosphorus, arsenic and antimony form single bonds as P–P, As–As and Sb–Sb while Bi forms metallic bonds in elemental state.
- \triangleright The single N–N bond is weaker than the single P–P bond because of high inter-electronic repulsion of the non-bonding electrons, due to the small bond length. Consequently the catenation tendency is weaker in nitrogen.
- \triangleright Another reason which affects the chemistry of nitrogen is the absence of d-orbitals in its valence shell. Besides restricting its covalency to four, nitrogen cannot form $d\pi$ –pπ bond as the heavier elements can example: $R_3P = O$ or $R_3P = CH_2$ (here R is a alkyl group).
- \triangleright P and As can make $d\pi$ –d π bond with transition metals in case they act as ligands for example: $P(C_2H_5)_3$ and $As(C_6H_5)_3$.

1. Reactivity towards hydrogen:

 \triangleright All the elements of nitrogen family form hydrides of the type EH₃ where $E = N$, P, As, Sb or Bi.

- \triangleright The hydrides show regular progression in their properties. The stability of hydrides decreases from ammonium hydride to bismuth hydride by observing their bond dissociation enthalpy. As a result, the reducing character of the hydrides increases.
- \triangleright Ammonia is a mild reducing agent while BiH₃ is the strongest reducing agent amongst all the hydrides.
- \triangleright Basicity decreases in the order

NH3 > PH³ > AsH³ > SbH³ > BiH³

Due to high electronegativity and small size of nitrogen, $NH₃$ shows hydrogen bonding in both solid and liquid state. As a result of this, it has higher melting and boiling points than that of PH₃.

Table: Properties of Hydrides of Group-15 Elements

2. Reactivity towards oxygen:

- \triangleright All 15 group's elements form two types of oxides: E₂O₃ and E₂O₅.
- \triangleright The oxides with higher oxidation state are more acidic than that of lower oxidation state. Their acidic character decreases as we move down the group.
- \triangleright The oxides of the type E₂O₃ of nitrogen and phosphorus are purely acidic; arsenic and antimony are amphoteric and bismuth's oxides are mostly basic.
- 3. Reactivity towards halogens:
	- \triangleright The group-15 elements react to form two series of halides: EX₃ and EX5.
	- \triangleright Nitrogen does not form pentahalide due to unavailability of the dorbitals in its valence shell.
	- ➢ Pentahalides are more covalent than trihalides. Because in pentahalides +5 oxidation state exists while in the case of trihalides +3 oxidation state exists.
	- \triangleright As elements in +5 oxidation state have high polarising power than in +3 oxidation state, the covalent character of bonds is more in pentahalides.
	- ➢ All the trihalides of group-15 elements except those of nitrogen are stable.
	- \triangleright In case of nitrogen, only NF₃ is stable. Except for BiF₃ all trihalides are predominantly covalent in nature.
- 4. Reactivity towards metals:
	- ➢ All group-15 elements react with metals to form their binary compounds showing –3 oxidation state, for example: calcium nitride (Ca₃N₂), calcium phosphide (Ca₃P₂), sodium arsenide (Na3As), zinc antimonide (Zn_3Sb_2) and magnesium bismuthide (Mg_3Bi_2) .

Dinitrogen (N2)

Preparation:

- \triangleright Dinitrogen is made by the liquefaction and fractional distillation of air.
- \triangleright Liquid dinitrogen having boiling point77.2 K, first distils out leaving behind liquid oxygen which have boiling point 90 K.

 \triangleright In the laboratory, N₂ is prepared by reaction of an aqueous solution of NH_4Cl with NaNO₃.

 NH_4Cl (aq) + NaNO₂ (aq) \rightarrow N₂ (g) + 2H₂O(l) + NaCl (aq)

- \triangleright Small amounts of nitric oxide and nitric acid formed as by product in reaction; these impurities are eliminated by passing the gas through aqueous sulphuric acid containing potassium dichromate.
- \triangleright Ntrogen obtained by the thermal decomposition of $(NH_4)_2Cr_2O_7$.

$$
(NH_4)_2C \text{ Heat } + 4H_2O + Cr_2O_3
$$

 \triangleright Very pure nitrogen is prepared by the thermal decomposition of sodium or barium azide.

$$
Ba(N_3)_2 \rightarrow Ba + 3N_2
$$

Properties:

- \triangleright Dinitrogen (N₂) is a colourless, odourless, tasteless and non-toxic gas.
- \triangleright There are two stable isotopes of it : ^{14}N and ^{15}N .
- \triangleright It has a less solubility in water and low f.p. and b.p.
- ➢ It is inert at room temperature because of the high bond energy of N≡N bond.
- \triangleright It's reactivity increase rapidly with rising the temperature. At higher temperatures, it readily combines with some metals to form mainly ionic nitrides and with non-metals, covalent nitrides. A few reactions are as follows:

Heat

$6Li + N_2 \rightarrow 2Li_3N$

Heat

$3Mg + N_2 \rightarrow Mg_3N_2$

 \triangleright Dinitrogen combines with hydrogen at about 773 K in the presence of a catalyst to form ammonia which is known as Haber's Process:

$$
N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g); \Delta_f H^{\circ} = -46.1 \text{ kJ} \text{mol}^{-1}
$$

 \triangleright N₂ combines with O₂ at very high temperature) to form nitric oxide, NO.

$$
\begin{aligned}\n\text{Heat} \\
\mathsf{N}_2 + \mathsf{O}_2(\mathsf{g}) &\rightleftarrows 2\mathsf{NO}(\mathsf{g})\n\end{aligned}
$$

Uses:

- \triangleright The main use of N₂ is in the manufacture of ammonia and other industrial chemicals containing nitrogen such as calcium cyanamide.
- \triangleright It is used to create an inert atmosphere (example in iron and steel industry, inert diluent for reactive chemicals).
- \triangleright Liquid N₂ is used as a refrigerant to preserve biological materials, food items and in cryosurgery.

Ammonia

Preparation:

 \triangleright NH₃ is present in slight amount in air and soil where it is formed by the decay of nitrogenous organic matter. Example: urea.

 $NH₂CONH₂ + 2H₂O \rightarrow (NH₄)₂CO₃ \rightleftharpoons 2NH₃ + H₂O + CO₂$

 \triangleright On small scale ammonia can be prepared from ammonium salts which decompose on treating with caustic soda or $Ca(OH)_2$.

> $2NH_4Cl + Ca(OH)_2 \rightarrow 2NH_3 + 2H_2O + CaCl_2$ $(NH_4)_2SO4 + 2NaOH \rightarrow 2NH_3 + 2H_2O + Na_2SO_4$

- \triangleright on a large scale ammonia is manufactured by Haber's process. $N_2(g) + 3H(g)$ \rightleftharpoons 2NH₃ (g); Δ_f H^o = -46.1 kJ mol⁻¹
- \triangleright According to Le Chatelier's principle, high pressure favours the ammonia formation. The optimum conditions are a pressure of 200 \times 105 Pa, a temperature of approximately 700 K and the use of a catalyst such as

FeO with small amounts of K_2O and Al_2O_3 to increase the rate of achievement of equilibrium.

 \triangleright Previously, Fe was used as a catalyst with Mo as a promoter.

Figure: Flow chart for the manufacture of ammonia

Properties:

- \triangleright NH₃ is a colourless gas with a pungent odour.
- \triangleright The freezing and boiling points are 198.4 and 239.7 K respectively.
- \triangleright In the solid and liquid states, it is linked by hydrogen bonds as in the case of water and which is responsible for its higher m.p. and b.p.
- \triangleright It is trigonal pyramidal and the nitrogen atom at the apex. Ammonia has three bond pairs and one lone pair of electrons.

Figure: structure of ammonia

 \triangleright Ammonia gas is highly soluble in water. Its aqueous solution is weakly basic due to the generation of OH⁻ ions.

$$
NH_3(g) + H_2O(I) \rightleftharpoons NH_4^+(aq) + OH^-(aq)
$$

 \triangleright With acids ammonia makes ammonium salts, example: NH₄Cl, (NH₄)₂SO₄. As a weak base, it precipitates the hydroxides of many metals from their salt solutions. Examples:

> $ZnSO_4$ (aq) + 2NH₄OH (aq) \rightarrow Zn(OH)₂ (s) + (NH₄)₂SO₄ (aq) (White ppt)

FeCl₃ (aq) + NH₄OH (aq) \rightarrow Fe₂O₃. X H₂O (s) + NH₄Cl (aq) (Brown ppt)

- ➢ Ammonia is a Lewis base due to presence of a lone pair of electrons on the nitrogen atom.
- \triangleright It donates the electron pair and forms linkage with metal ions and the formation of such complex compounds used in detection of metal ions for example: Cu²⁺, Ag⁺ :

 Cu^{2+} (aq) + 4NH₃ (aq) \rightleftharpoons [Cu(NH₃)₄]²⁺ (aq) (blue) (deep blue) $Ag^+(aq) + Cl^-(aq) \rightarrow AgCl(s)$ (colourless) (white ppt) AgCl (s) + 2NH₃ (aq) \rightarrow [Ag(NH₃)₂]Cl (aq) (white ppt) (colourless)

Uses:

➢ Ammonia is used to produce various nitrogenous fertilisers such as ammonium nitrate, urea, ammonium phosphate and ammonium sulphate, etc.

- \triangleright It is used in the manufacture of some inorganic nitrogen compounds, the most important one being HNO₃.
- \triangleright Liquid ammonia is as used as a refrigerant.

Oxides of nitrogen

Table: Oxides of nitrogen

Table: Structure of oxides of nitrogen

Nitric acid

 \triangleright Nitrogen forms oxoacids. Examples: $H_2N_2O_2$, HNO₂ and HNO₃.

Preparation

 \triangleright In the laboratory, HNO₃ is prepared by heating KNO₃ or NaNO₃ and conc. Sulphuric acid in a glass retort.

 $NaNO₃ + H₂SO₄$ \rightarrow NaHSO₄ + HNO₃

 \triangleright On a large scale nitric acid is prepared mostly by Ostwald's process. Ostwald's process is based on catalytic oxidation of NH³ by atmospheric oxygen.

$$
\begin{array}{c} 4NH_3\left(g\right)+5O_2\left(g\right) \xrightarrow{\quad \ \ \, \text{Pt/Rh gauge catalyst} \quad} 4NO\left(g\right)+6H_2O\left(g\right) \\ \text{(from air)} \end{array}
$$

 \triangleright Nitric oxide thus formed reacts with oxygen giving NO₂.

$$
2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)
$$

 \triangleright NO₂ reacts with H₂O and form HNO₃.

$$
3NO2(g) + H2O (I) \rightarrow 2HNO3 (aq) + NO (g)
$$

- \triangleright Thus formed NO is recycled and the aqueous HNO₃ can be concentrated by distillation upto approximately 68% by mass.
- ➢ Further concentration to 98% can be achieved by dehydration with concentrated sulphuric acid.

Properties:

- \triangleright It is a colourless liquid which have f.p. 231.4 K and b.p. 355.6 K.
- \triangleright Laboratory grade HNO₃ contains approximately 68% of the HNO₃ by mass.

Figure: Structure of nitric acid

 \triangleright It has a specific gravity of 1.504. In the gaseous state, nitric acid exists as a planar molecule. In aqueous solution, $HNO₃$ behaves as a strong acid giving H_3O^+ ion and NO_3^- ions.

 $HNO₃$ (aq) + H₂O (l) \rightarrow H₃O⁺ (aq) + NO₃⁻ (aq)

 \triangleright Conc. HNO₃ is a strong oxidising agent and attacks most metals except noble metals such as Au and Pt.

 $3Cu + 8HNO₃$ (dil) \rightarrow $3Cu(NO₃)₂ + 2NO + 4H₂O$

 $Cu + 4HNO₃(conc.)$ \rightarrow 3Cu(NO₃)₂ + 2NO₂ + 2H₂O

 \triangleright Zn reacts with dil. HNO₃to give N₂O and with concentrated acid to give $NO₂$.

 $4Zn + 10HNO₃(dilute) \rightarrow 4 Zn (NO₃)₂ + 5H₂O + N₂O$ $Zn + 4HNO₃(conc.) \rightarrow Zn (NO₃)₂ + 2H₂O + 2NO₂$

- \triangleright Some metals like chromium, aluminium do not dissolve in conc. HNO₃ because of the formation of a passive film of oxide on the surface of metal. Concentrated nitric acid also oxidises non–metals.
- \triangleright Iodine is oxidised to iodic acid, carbon to CO₂, sulphur to sulphuric acid and phosphorus to phosphoric acid.

$$
I_2 + 10HNO_3 \rightarrow 2HIO_3 + 10NO_2 + 4H_2O
$$

\n
$$
C + 4HNO_3 \rightarrow CO_2 + 2H_2O + 4NO_2
$$

\n
$$
S_8 + 48HNO_3 \rightarrow 8H_2SO_4 + 48NO_2 + 16H_2O
$$

\n
$$
P_4 + 20HNO_3 \rightarrow 4H_3PO_4 + 20NO_2 + 4H_2O
$$

- ➢ **Brown Ring Test:** The familiar brown ring test for nitrates depends on the ability of Fe²⁺ to reduce nitrates to nitric oxide, which reacts with Fe²⁺ to form a brown coloured complex.
- \triangleright The test is usually carried out by adding dil. ferrous sulphate solution to an aqueous solution containing nitrate ion, and then carefully adding concentrated H_2SO_4 along the sides of the test tube.
- \triangleright A brown ring generation at interface between sulphuric acid and the solution layers indicates the presence of nitrate ion in solution.

Uses:

- \triangleright The main use of HNO₃ is in the manufacture of ammonium nitrate for fertilisers and other nitrates for use in explosives and pyrotechnics.
- \triangleright HNO₃ is used for the preparation of trinitrotoluene.
- \triangleright It is used in etching of metals and pickling of stainless steel, and as an oxidising agent in rocket fuels.

Phosphorous allotropic forms

- \triangleright Phosphorus is found in various allotropic forms, the important ones being white, red and black.
- ➢ **White phosphorus**: it is a translucent white waxy solid. It consists of discrete tetrahedral P4-molecule.

Figure: White phosphorous

 \triangleright It is poisonous, insoluble in water but soluble in CS_2 and glows in dark. It dissolves in boiling sodium hydroxide solution in an inert atmosphere giving PH_3 .

$$
P_4 + 3NaOH + 3H_2O \rightarrow PH_3 + 3NaH_2PO_2
$$

(sodium hypophosphite)

 \triangleright White phosphorus is less stable and it is very reactive because of angular strain in the P_4 molecule where the angles are only 60 \degree . It tends to catch fire readily in air to give dense white fumes of P_4O_{10} .

$$
P_4 + 5O_2 \rightarrow P_4O_{10}
$$

- ➢ **Red phosphorus**: It is preparaed by heating white phosphorus at 573K in an inert atmosphere for several days.
- \triangleright When red P is heated under high pressure black phosphorus is formed.
- \triangleright It possesses iron grey lustre. It is odourless, non-poisonous and insoluble in water as well as in $CS₂$.

Figure: Red phosphorous

- \triangleright Chemically, red P is less reactive than white phosphorus.
- \triangleright It does not glow in the dark. It is polymeric and consist of chains of P₄ tetrahedral linked together.
- ➢ **Black phosphorus**:
- \triangleright Black phosphorus has two forms α and β-black phosphorus.
- \triangleright α -Black phosphorus is preparaed by heating red phosphorus in a sealed tube at 803K.
- \triangleright It can be sublimed in air and it has opaque monoclinic or rhombohedral crystals.
- \triangleright It does not oxidise in air.
- \triangleright When white phosphorus is heated at 473 K under high pressure β-Black phosphorus forms.

Phosphine

Preparation:

 \triangleright Phosphine is prepared by the reaction of calcium phosphide with water or dil. Hydrochloric acid.

$$
Ca3P2 + 6H2O \rightarrow 3Ca(OH)2 + 2PH3
$$

$$
Ca3P2 + 6HCl \rightarrow 3CaCl2 + 2PH3
$$

➢ Phosphine is prepared by heating white phosphorus with conc. NaOH solution in presence of CO₂.

$$
P_4 + 3NaOH + 3H_2O \rightarrow PH_3 + 3NaH_2PO_2
$$

(sodium hypophosphate)

- \triangleright In pureest form it is non-inflammable but becomes inflammable due to the presence of P_2H_4 or P_4 vapours.
- \triangleright To purify it is absorbed in HI to form phosphonium iodide (PH4I) which on treating with KOH gives off phosphine.

$$
PH_4I + KOH \rightarrow KI + H_2O + PH_3
$$

Properties:

- \triangleright It is a colourless gas with rotten fish smell and it is highly poisonous.
- ➢ Phosphine explodes in contact with contact of nitric acid, chlorine and bromine vapours.
- \triangleright It is slightly soluble in water. The solution of PH₃ in water decomposes in presence of light and gives red phosphorus and H_2 gas.
- \triangleright When it is absorbed in CuSO₄ or HgCl₂ solution, the corresponding phosphides are obtained.

$$
3CuSO4 + 2PH3 \rightarrow Cu3P2 + 3H2SO4
$$

$$
3HgCl2 + 2PH3 \rightarrow Hg3P2 + 6HCl
$$

➢ Phosphine is weakly basic and gives phosphonium compounds with acids, example:

$$
PH_3 + HBr \rightarrow PH_4Br
$$

Uses:

 \triangleright Containers containing CaC₂ and Ca₃P₂ are sliced and thrown in the sea when the gases evolved burn and serve as a signal.

Phosphorus trichloride

- \triangleright Phosphorus forms two types of halides:
	- 1. PX₃ (here $X = F$, Cl, Br, I)
	- 2. PX_5 (here $X = F$, Cl, Br).

Figure: Phosphorus trichloride

Preparation:

 \triangleright It is prepared by passing dry Cl₂ over heated white phosphorus.

 $P_4 + 6Cl_2 \rightarrow 4PCl_3$

 \triangleright It is prepared by the reaction of SOCI₂ with white phosphorus.

 $P_4 + 8SOCl_2 \rightarrow 4PCl_3 + 4SO_3 + 2S_2Cl_2$

Properties:

 \triangleright It is an oily liquid and which hydrolyses in moisture.

 $PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCl$

➢ It reacts with organic compounds containing –OH group such as CH₃COOH, C₂H₅OH.

> $3CH_3COOH + PCl_3$ \rightarrow $3CH_3COCl + H_3PO_3$ $3C_2H_5OH + PCI_3 \rightarrow 3C_2H_5Cl + H_3PO_3$

Phosphorous pentachloride

 \triangleright It has a pyramidal shape and phosphorus is sp³ hybridised.

Preparation:

 \triangleright PCl₅ can be produced by the reaction of white phosphorus with excess of dry chlorine.

$$
P_4 + 10Cl_2 \rightarrow 4 \, PCl_5
$$

 \triangleright PCl₅ is prepared by the reaction of SO₂Cl₂ and phosphorus.

$$
P_4 + 10SO_2Cl_2 \rightarrow 4PCI_5 + 10SO_2
$$

Properties:

➢ Phosphorous pentachloride is a yellowish white powder and it hydrolyses to POCl₃ in moist air and finally gets converted to phosphoric acid.

> PCl_5 +H₂O \rightarrow POCl₃ + 2HCl $POCl₃ + 3H₂O \rightarrow H₃PO₄ + 3HCl$

 \triangleright It sublimes on heating but decomposes on stronger heating.

 $PCl_5 \xrightarrow{\text{Heat}} PCl_3 + Cl_2$

≻ It reacts with compounds containing hydroxyl group converting them to chloro-derivatives.

 $C_2H_5OH + PCl_5 \rightarrow C_2H_5Cl + POCl_3 + HCl$

 $CH_3COOH + PCl_5 \rightarrow CH_3COCl + POCl_3 + HCl$

 \triangleright Metal powder on heating with PCI₅ gives chlorides.

 $2Ag + PCI_5 \rightarrow 2AgCl + PCI_3$

$$
Sn + 2PCI_5 \rightarrow SnCl_4 + 2PCI_3
$$

 \triangleright It is used in the synthesis of some organic compounds, for example C2H5Cl, CH3COCl.

Figure: phosphorous pentachloride

- ➢ It has a trigonal bipyramidal structure In gaseous and liquid phases,.
- \triangleright The three equatorial P–Cl bonds are equivalent, and axial bond pairs suffer more repulsion as compared to equatorial bond pairs so two axial bonds are longer than equatorial bonds.

Oxoacids of phosphorous

- \triangleright Phosphorus makes different type of oxoacids.
- \triangleright The important oxoacids of phosphorus with their formulas, methods of preparation and the presence of some characteristic bonds in their structures are as follosw:

Table: Oxoacids of phosphorous

- \triangleright The compositions of the oxoacids are interrelated in terms of loss or gain of water molecule or O-atom.
- \triangleright In oxoacids phosphorus is in Td geometry, surrounded by other atoms.
- ➢ All oxoacids contain at least one P=O bond and one P–OH bond.
- \triangleright The oxoacids has P=O and P-OH bonds, either P-P (example: H₄P₂O₆) or P –H (example: H₃PO₂) bonds but not both.
- ➢ These acids in +3 oxidation state of phosphorus tend to disproportionate to higher and lower oxidation states. Eg.: orthophophorous acid on heating disproportionates to give orthophosphoric acid and phosphine.

$4H_3PO_3 \rightarrow 3H_3PO_4 + PH_3$

Cyclotrimetaphosphoric acid, (HPO₃)₃ Polymetaphosphoric acid, $(HPO₃)_n$

Figure: structures of some important oxoacids of phosphorus

- \triangleright The acids with P–H bond have strong reducing properties.
- ➢ Hypo-phosphorous acid is a good reducing agent as it contains two P–H bonds and reduces, for example, $AgNO₃$ to metallic Ag.

$$
4 AgNO3 + 2H2O + H3PO2 \rightarrow 4Ag + 4HNO3 + H3PO4
$$

- \triangleright These P–H bonds are not ionisable to give H⁺ and do not play any role in basicity.
- \triangleright H₃PO₃ is dibasic and H₃PO₄ is tribasic, as the structure of H₃PO₃ has two P–OH bonds and H₃PO₄ three P-OH bonds.

Group-16 elements

- ➢ Oxygen (O), sulphur (S), selenium (Se), tellurium (Te), polonium (Po) and livermorium (Lv) constitute Group 16 of the periodic table.
- \triangleright Group-16 elements are recognized as group of chalcogens.

Occurrence

- \triangleright Oxygen is the most abundant on earth.
- \triangleright Oxygen contributes about 46.6% by mass of earth's crust.
- \triangleright Dry air contains 20.94% O₂ by volume.
- \triangleright The abundance of sulphur in the earth's crust is only 0.03-0.1%.
- \triangleright Sulphur exists primarily as sulphates, for example: gypsum (CaSO₄) .2H₂O), baryte (BaSO₄) and sulphides such as galena (PbS), zinc blende (ZnS) , epsom salt $(MgSO₄$.7H₂O), and copper pyrites (CuFeS₂).
- \triangleright Traces of sulphur occur as H₂S in volcanoes.
- ➢ Organic materials such as proteins, garlic, mustard, onion, hair and wool contain sulphur.
- \triangleright Se and Te are also found as metal selenides and tellurides in sulphide ores.
- \triangleright Po occurs in nature as a decay product of thorium (Th) and uranium (U) minerals.
- \triangleright Ly is a synthetic radioactive element and the atomic number is 116, atomic mass 292.
- \triangleright Lv has been produced only in a very small amount and has very short half-life. This limits the proper study of Lv.

Table: Some Physical Properties of Group 16 Elements

Electronic configuration

> The elements of Group-16 have 6 e⁻ in the outermost shell and have ns² np⁴ general electronic configuration.

Atomic and ionic radii

 \triangleright Due to increase in the number of shells, atomic and ionic radii increase as we move from top to bottom in the group.

Ionisation enthalpy

- ➢ Ionisation enthalpy decreases as we move down the group because of increase in size.
- \triangleright The elements of this group have lower ionisation enthalpy values compared to those of Group-15 in the corresponding periods as Group-15 elements have extra stable half-filled p-orbitals electronic configurations.

Electronegativity

- \triangleright Oxygen has very high electronegativity value.
- \triangleright In the group-16, electronegativity decreases with an increase in atomic number. This indicates that the metallic character increases as we move from oxygen to polonium.

Physical properties

- \triangleright O and Sr are non-metals, Se and Te metalloids, whereas Po is a metal.
- \triangleright Polonium is radioactive and half-life is 13.8 days.
- \triangleright All these elements show allotropy.
- \triangleright The m.p. and b.p. increase with an increase in atomic number as we move down the group.
- \triangleright The large difference between the m.p. and b.p. of oxygen and sulphur can be explained on the basis of their atomicity; oxygen exists as diatomic molecule (O_2) whereas sulphur exists as polyatomic molecule (S_8) .

Chemical property

Oxidation states and trends in chemical reactivity

- \triangleright The elements of Group-16 show different oxidation states.
- \triangleright The oxidation state -2 shown by these elements, and its stability decreases down the group.
- \triangleright Po barely shows -2 oxidation state.
- \triangleright The electronegativity of oxygen is very high, it shows only negative oxidation state as -2 except in the case of $OF₂$ where its oxidation state $is +2.$
- \triangleright Other elements of the group exhibit + 2, + 4, + 6 oxidation states but + 4 and + 6 are more common.
- \triangleright S, Se and Te usually show +4 oxidation state in their compounds with oxygen and +6 with fluorine.
- \triangleright The stability of +6 oxidation state decreases as we move down the group and stability of +4 oxidation state increases due to inert pair effect.
- \triangleright Bonding in +4 and +6 oxidation states is mainly covalent. Anomalous behaviour of oxygen
- \triangleright The anomalous behaviour of oxygen, like other members of pblock present in II period is due to its high electronegativity and small size.
- \triangleright One typical example of effects of small size and high electronegativity is the presence of strong hydrogen bonding in $H₂O$ which is not exists in $H₂S$.
- \triangleright The absence of d-orbitals in oxygen limits its covalency to four and hardly exceeds two.
- \triangleright In case of other elements of the group-16, the valence shells can be expanded and covalence exceeds four.

i) Reactivity with hydrogen:

- \triangleright Group-16 elements form hydrides of the type H₂E.
- \triangleright Their acidic character increases as we move from H₂O to H₂Te.
- \triangleright The increase in acidic character is explained in terms of decrease in bond enthalpy for the dissociation of H–E bond as we move down the group.
- \triangleright Because of the decrease in enthalpy for the dissociation of H–E bond down the group, the thermal stability of hydrides also decreases as we move from H₂O to H₂Po.
- \triangleright All the hydrides except H₂O possess reducing property and this character increases from H₂S to H₂Te.

Table: Properties of Hydrides of Group 16 Elements

ii) Reactivity with oxygen:

- \triangleright Allgroup-16 elements form oxides of the EO₂ and EO₃ types.
- \geq Ozone (O₃) and sulphur dioxide are gases while selenium dioxide is solid.
- \triangleright Reducing property of dioxide decreases from SO₂ to TeO₂.
- \triangleright Besides EO₂ type, S, Se and Te also form EO₃ type oxides which are SO₃, SeO₃, TeO₃. These oxides are acidic in nature.

iii) Reactivity towards the halogens:

- \triangleright Elements of Group-16 form a large number of halides of the type, EX₆, EX₄ and EX₂; here E = element of the group and X = halogen.
- \triangleright The stability of the halides decreases in the order:

$$
F^- > Cl^- > Br^- > I^-
$$

- \triangleright Hexa fluorides are the only stable halides amongst hexa halides,.
- \triangleright All hexa fluorides are gaseous in nature. They have octahedral structure. SF₆ is remarkably stable for steric reasons.
- \triangleright Amongst tetrafluorides, SF₄ is a gas, SeF₄ is a liquid and TeF₄ is a solid.
- ➢ This geometry is termed as see-saw geometry.
- \triangleright All elements except oxygen form dichlorides and dibromides. These dihalides are formed by sp³-hybridisation and thus, have Td structure. The famous monohalides are dimeric in nature.
- \triangleright Examples: S_2F_2 , S_2Cl_2 , S_2Br_2 , Se_2Cl_2 and Se_2Br_2 . The disproportionation reaction of these is as follows:

$$
2Se_2Cl_2 \rightarrow SeCl_4 + 3Se
$$

Dioxygen

Preparation

- \triangleright O₂ is obtained in the laboratory by the following ways:
	- 1. On heating the oxygen containing salts such as chlorates, nitrates and permanganates.

$$
2KClO_3 \xrightarrow[{\rm MnO_2}]{\rm Heat} + 2KCl + 3O_2
$$

2. By thermal decomposition of the metal oxides :

 $2Ag_2O(s) \rightarrow 4Ag(s) + O_2(g)$ $2HgO(s)$ \rightarrow $2Hg(1) + O₂(g)$ $2Pb_3O_4(s) \rightarrow 6PbO(s) + O_2(g)$ $2PbO₂(s) \rightarrow 2PbO(s) + O₂(g)$

3. Hydrogen peroxide is readily decomposed into H_2O and O_2 by catalysts such as powdered metals and MnO2.

$$
2H_2O_2
$$
 (aq) \rightarrow $2H_2O(I) + O_2$ (g)

 \triangleright On large scale oxygen is prepared from water or air. Electrolysis of H₂O leads to the release of H_2 gas at the cathode and oxygen at the anode.

Properties

- \triangleright O₂ is a colourless and odourless gas.
- Exteeds the solubility in water is to the extent of 3.08 cm³ in 100 cm³ water at 293 K which is sufficient for the vital support of marine and aquatic life.
- \triangleright O₂ liquefies at 90 K and freezes at 55 K.
- \triangleright Oxygen atom has three stable isotopes: 16 O, 17 O and 18 O.
- ➢ Dioxygen directly reacts with nearly all metals and non-metals except some metals (e.g., gold, platinum) and some noble gases.
- \triangleright Some of the combustion reactions of dioxygen with metals, non-metals and other compounds are given below:

 $2Ca + O₂ \rightarrow 2CaO$ $4\text{Al} + 3\text{O}_2 \rightarrow 2\text{Al}_2\text{O}_3$ $P_4 + 5O_2 \rightarrow P_4O_{10}$ $C + O_2 \rightarrow CO_2$ $2ZnS + 3O₂ \rightarrow 2ZnO + 2SO₂$ $CH₄ + 2O₂ \rightarrow CO₂ + 2H₂O$

 \triangleright Some compounds are catalytically oxidised. For example:

$$
2SO_2 + O_2 \xrightarrow{V_2O_5} 2SO_3
$$

$$
4HCl + O_2 \xrightarrow{CuCl_2} 2Cl_2 + 2H_2O
$$

Uses:

- \triangleright Oxygen is used in oxyacetylene welding, in the manufacture of many metals, particularly steel.
- \triangleright Oxygen cylinders are widely used in hospitals, high altitude flying and in mountaineering.
- \triangleright The combustion of fuels, example: hydrazines in liquid oxygen, provides tremendous thrust in rockets.

Simple oxide

- \triangleright A binary compound of an element and oxygen is known as oxide. O₂ reacts with all elements of the periodic table and form oxides.
- \triangleright Oxides can be simple for example: MgO, Al₂O₃ or mixed (Pb₃O₄, Fe₃O₄.
- \triangleright Simple oxides can be classified in acidic, basic or amphoteric oxides.
- \triangleright An oxide that combines with water to give an acid is termed acidic oxide (example: SO_2 , Cl_2O_7 , CO_2 , N_2O_5). The SO_2 combines with water to give $H₂SO₃$, an acid.

$$
SO_2 + H_2O \rightarrow H_2SO_3
$$

- \triangleright When a oxide gives a base with water is termed as basic oxides (e.g., $Na₂O$, CaO, BaO).
- \triangleright Calcium oxide combines with H₂O and gives Ca(OH)₂.

$$
CaO + H_2O \rightarrow Ca(OH)_2
$$

 \triangleright Generally metallic oxides are basic but some show dual behaviour. Such oxides are known as amphoteric oxides. Example: Al_2O_3 , which reacts with acids as well as alkalies.

$$
\text{Al}_2\text{O}_3(s) + 6\text{HCl}\left(\text{aq}\right) + 9\text{H}_2\text{O}\left(\text{I}\right) \rightarrow 2\left[\text{Al}(\text{H}_2\text{O})_6\right]^{3+}\left(\text{aq}\right) + 6\text{Cl}^-\left(\text{aq}\right)
$$
\n
$$
\text{Al}_2\text{O}_3(s) + 6\text{NaOH}\left(\text{aq}\right) + 3\text{H}_2\text{O}\left(\text{I}\right) \rightarrow 2\text{Na}_3\left[\text{Al}\left(\text{OH}\right)_6\right]\left(\text{aq}\right)
$$

 \triangleright Some oxides are neither acidic nor basic. Such oxides are known as neutral oxides. Examples: CO, NO and N2O.

Ozone

 \triangleright Ozone is an allotropic form of oxygen.

- ➢ Ozone is formed from atmospheric oxygen in the presence of sunlight at the height of 20 kilometres,.
- \triangleright The earth's surface is protected by ozone layer from an excessive concentration of ultraviolet (UV) radiations.

Preparation

➢ When oxygen is passed through an electrical discharge, conversion of oxygen into ozone happens. The product is ozonised oxygen.

$$
30_2 \rightarrow 20_3
$$
; $\Delta H^{\circ}(298 \text{ K}) = +142 \text{ kJ} \text{ mol}^{-1}$

- \triangleright The formation of O₃ from O₂ is an endothermic process.
- \triangleright If concentrations of O₃ > 10% are required, a battery of ozonisers can be used, and pure ozone is condensed in a vessel surrounded by liquid $O₂$.

Properties

- \triangleright O₃ is a pale blue gas, dark blue in liquid state and violet-black in solid state. O_3 has a distinctive smell.
- \triangleright If the concentration > 100 ppm, breathing becomes uncomfortable and causes headache or nausea.
- \triangleright Ozone is thermodynamically unstable with respect to oxygen since its decomposition into oxygen results in the liberation of heat ($\Delta H = -ve$) and an increase in entropy (ΔS = +ve).
- ➢ These two effects reinforce each other, resulting ∆G = –ve for its conversion into oxygen. O_3 in high concentration is explosive.
- $▶$ Due to the ease with which it liberates atoms of nascent oxygen (O₃ → O_2 + O), it acts as a powerful oxidising agent.
- \triangleright Ozone oxidises PbS to lead sulphate and iodide ions to iodine.

 $PbS(s) + 4O_3(g) \rightarrow PbSO_4(s) + 4O_2(g)$ $2I^-(aq) + H_2O(l) + O_3(g) \rightarrow 2OH^-(aq) + I_2(s) + O_2(g)$

- \triangleright When O₃ reacts with an excess of KI solution buffered with a borate buffer, iodine is liberated which can be titrated against a standard solution of sodium thiosulphate. It is used to estimate $O₃$ gas.
- \triangleright The nitrogen monoxide combines very rapidly with ozone. So that nitrogen oxides emitted from the exhaust systems of supersonic jet

aeroplanes may be slowly deplete the ozone layer in the upper atmosphere.

$$
NO(g) + O_3(g) \rightarrow NO_2(g) + O_2(g)
$$

- \triangleright Another threat to this ozone layer is posed by the use of freons which are used in aerosol sprays and as refrigerants.
- \triangleright The two O-O bond lengths in the ozone molecule are identical (128 pm) and the molecule is angular as expected with a bond angle of about 117 $^{\circ}$. Resonance in O_3 is as follows:

Uses:

- \triangleright O₃ helps in formation of germicide, disinfectant and for sterilising water.
- \triangleright O₃ is also used for bleaching oils, flour, starch, and ivory.
- \triangleright Ozone acts as an oxidising agent for the production of KMnO₄.

Sulphur allotropic forms

- \triangleright Sulphur forms various allotropes of which the yellow rhombic i.e. αsulphur and monoclinic i.e. β –sulphur form.
- \triangleright The rhombic sulphur is stable form at room temperature. Rhombic sulphur transforms into monoclinic sulphur if heated at 369 K temperature.

Rhombic sulphur (α-sulphur)

- \triangleright This allotrope is yellow in colour and its m.p. is 385.8 K and the specific gravity is 2.06.
- \triangleright The evaporation of roll sulphur in carbon disulphide results crystals of rhombic sulphur.
- \triangleright It is insoluble in protic solvent like water but dissolves little in benzene, alcohol and ether. It is readily soluble in $CS₂$.

Monoclinic sulphur (β-sulphur)

- \triangleright The m.p. of monoclinic sulphur is 393 K and specific gravity is 1.98.
- \triangleright It is soluble in CS₂.
- ➢ Colourless needle shaped crystals of **β**-sulphur is prepared by melting rhombic sulphur.
- ➢ The α-sulphur is stable below 369 K and transforms into β-sulphur above this.
- \triangleright At 369 K both the forms are stable. This temperature is termed as transition temperature.
- \triangleright The rhombic and monoclinic sulphur have S₈ molecules. Both has a crown shape.
- \triangleright At elevated temperatures approximately 1000 K, S₂ is the dominant species and is paramagnetic in nature.

Figure: The structures of (a) S_8 ring in rhombic sulphur and (b) S_6 form

Sulphur dioxide

Preparation

 \triangleright SO₂ is formed together with sulphur trioxide when sulphur is burnt in presence of air:

$$
S(s) + O_2(g) \rightarrow SO_2(g)
$$

ightharpoonup In the lab it is readily prepared by treating a sulphite with dil. H₂SO₄.

$$
SO_3^{2}
$$
⁻ (aq) + 2H⁺ (aq) \rightarrow H₂O (l) + SO₂ (g)

 \triangleright Industrially sulphur dioxide is produced as a by-product of the roasting of sulphide ores. The gas after drying is liquefied under high pressure and stored in steel cylinders.

$$
4FeS_2(s) + 11O_2(g) \rightarrow 2Fe_2O_3(s) + 8SO_2(g)
$$

Properties

- \triangleright SO₂ is a colourless gas with pungent smell and it is soluble in H₂O.
- \triangleright SO₂ liquefies at room temperature under a pressure of two atmospheres and boils at 264 K.
- \triangleright When SO₂ passed through water, forms a solution of sulphurous acid. $SO₂(g) + H₂O (I) \rightleftharpoons H₂SO₄(aq)$
- \triangleright It reacts easily with NaOH solution, forming sodium sulphite. Then sodium sulphite reacts with more $SO₂$ to form sodium hydrogen sulphite $(NaHSO₃)$.

$$
2NaOH + SO2 \rightarrow Na2SO3 + H2O
$$

$$
Na2SO3 + H2O + SO2 \rightarrow 2NaHSO3
$$

- \triangleright The reaction of SO₂ with water and **alkalies**, it behaves very similar to that of $CO₂$.
- \triangleright SO₂ reacts with Cl₂ in the presence of charcoal to give SO₂Cl₂.
- \triangleright It is oxidised to SO_3 by oxygen in the presence of vanadium oxide catalyst.

$$
SO_2(g) + Cl_2(g) \rightarrow SO_2Cl_2(l)
$$

$$
2SO_2(g) + O_2(g) \xrightarrow{V_2O_5} 2SO_3(g)
$$

 \triangleright SO₂ behaves as a reducing agent when it is moist. Example: it converts Fe(III) ions to Fe(II) ions and decolourises acidified KMnO₄ (VII) solution.

$$
2Fe^{3+} + SO_2 + 2H_2O \rightarrow 2Fe^{2+} + SO_4^{2-} + 4H^+
$$

$$
5SO_2 + 2MnO_4^- + 2H_2O \rightarrow 5SO_4^{2-} + 4H^+ + 2Mn^{2+}
$$

 \triangleright The molecule of SO₂ is angular. It is a resonance hybrid of the two canonical forms:

Uses:

- \triangleright Sulphur dioxide is used
	- 1. In refining petroleum and sugar
	- 2. In bleaching wool and silk
	- 3. As a disinfectant and preservative. $H₂SO₄$, sodium hydrogen sulphite and calcium hydrogen sulphite are manufactured from $SO₂$.
	- 4. Liquid $SO₂$ is used as a solvent to dissolve different organic and inorganic chemicals.

Oxoacids of sulphur

- \triangleright Sulphur forms a different oxoacids such as H_2SO_3 , $H_2S_2O_3$, $H_2S_2O_4$, $H_2S_2O_5$, $H_2S_xO_6$ (Here $x = 2$ to 5), H_2SO_4 , $H_2S_2O_7$, H_2SO_5 , $H_2S_2O_8$.
- \triangleright Some of these acids are unstable and cannot be isolated as they are known in aqueous solution or in the form of their salts.

Figure: Structures of some important oxo-acids of sulphur

Sulphuric Acid

Manufacture

- \triangleright H₂SO₄ is one of the most important industrial chemicals worldwide.
- \triangleright H₂SO₄ is prepared industrially by the contact Process which is as follows:
	- 1. Burning of sulphur ores in air to produce $SO₂$.
	- 2. Conversion of $SO₂$ to $SO₃$ by the reaction with oxygen in the presence of a catalyst like V_2O_5 .
- 3. Absorption of SO_3 in H₂SO₄ to give Oleum i.e. H₂S₂O₇.
- \triangleright The main step in the manufacture of H₂SO₄ is the catalytic oxidation of $SO₂$ with $O₂$ to give $SO₃$ in the presence of $V₂O₅$.

$$
2SO_2(g) + O_2(g) \xrightarrow{V_2O_5} 2SO_3(g) \Delta_r H^{\ominus} = -196.6 \text{ kJ} \text{mol}^{-1}
$$

- \triangleright The reaction is exothermic, reversible.
- \triangleright Low temperature and high pressure are the favourable conditions for maximum yield.
- \triangleright The plant is operated at a pressure of 2 bar and a temperature of 720 K. The sulphur trioxide gas from the catalytic converter is absorbed in concentrated H_2SO_4 to yield oleum.
- \triangleright Dilution of oleum with H₂O gives sulphuric acid.
- \triangleright In the industry two steps are carried out simultaneously to reduce the cost.

$$
SO_3 + H_2SO_4 \rightarrow H_2S_2O_7
$$

(Oleum)

 \triangleright The sulphuric acid obtained by Contact process is 96-98% pure.

Figure: Flow diagram for the manufacture of sulphuric acid

Properties

- \triangleright H₂SO₄ is a colourless, dense, and oily liquid. It has specific gravity of 1.84 at 298 K.
- \triangleright H₂SO₄ freezing point is 283 K and boiling point 611 K.
- \triangleright Conc. H₂SO₄ should add into water very slowly with continuous stirring.
- \triangleright The sulphuric acid shows following characteristics:
	- 1. Low volatility
	- 2. Strong acidic character
	- 3. Strong affinity for water and
	- 4. Ability to act as an oxidising agent. H_2SO_4 ionises in two steps In

aqueous solution-
H₂SO₄(aq) + H₂O(l) \rightarrow H₃O⁺(aq) + HSO₄⁻(aq); K_{a} = very large (K_{a} > 10) $HSO₄⁻(aq) + H₂O(l) \rightarrow H₃O⁺(aq) + SO₄⁻²(aq)$; $K_a = 1.2 \times 10⁻²$

- \triangleright The high value of K_{a1} means that sulphuric acid is largely dissociated into HSO₄⁻ a<mark>nd H⁺.</mark>
- **►** Sulphuric acid is less volatile so it can be used to manufacture more volatile acids from their corresponding salts.

 $2MX + H₂SO₄$ \rightarrow 2HX + M₂SO₄ (here M is metal and X= F, Cl, NO₃)

Uses

- ➢ Sulphuric acid is a significant chemical reagent.
- \triangleright H₂SO₄ is needed for the manufacture of hundreds of other compounds and also in many industrial processes.
- \triangleright The bulk of H₂SO₄ produced is used in the manufacture of fertilisers like $(NH_4)_2SO_4.$
- \triangleright Other uses are in:
	- 1. Petroleum refining
	- 2. manufacture of paints, pigments and dyestuff intermediates
	- 3. detergent industry
	- 4. storage batteries
	- 5. metallurgical applications examples: cleansing metals before enamelling, electroplating and galvanising
	- 6. in the manufacture of nitrocellulose products and
	- 7. as a laboratory reagent.

Group- 17 elements

- \triangleright Fluorine (F), chlorine (Cl), bromine (Br), iodine (I), astatine (At) and tennessine (Ts) are members of Group-17.
- \triangleright Group-17 elements are also termed as the halogens.
- \triangleright These are highly reactive non-metallic elements.
- \triangleright There is a regular progression in their physical and chemical properties. At and Ts are radioactive elements.

Occurrence

- \triangleright F and CI are plentiful in nature while Br and I are less so.
- \triangleright F is present mainly as insoluble fluorides such as CaF₂, Na₃AlF₆ and 3Ca₃ $(PO₄)₂ CaF₂$ and small quantities are present in soil, bones and teeth of animals and river water, plants.
- ➢ Sea water contains NaCl, NaBr and NaI, KCL, KBr and, MgCl2, MgBr2, MgI² and also CaCl₂, CaBr₂, Cal₂ but mainly NaCl solution 2.5% by mass.
- ➢ Certain forms of marine life contain iodine (I) in their body; various seaweeds, for example, contain upto 0.5% of iodine and Chile saltpetre contains upto 0.2% of sodium iodate.
- \triangleright Ts is a synthetic radioactive element. Its atomic number is 117, atomic mass is 294. Its half-life is in milliseconds only.

Property	F	CI	Br		A
Atomic number	9	17	35	53	8
Atomic mass(g)	19.00	35.45	79.90	126.90	21
$mol-1$					
Electronic	[He] $2s^2 2p^5$		$[Ne]3s^{2}3p^{5}$ [Ar]3d ¹⁰ 4s ² 4p ⁵ [Kr]4d ¹⁰ 5s ² 5p ⁵		$[Kr]4f^{14}5d$
configuration					
Covalent	64	99	114	133	
radius/pm					
lonic radius X ⁻	133	184	196	220	
(pm)					
Ionisation	1680	1256	1142	1008	
enthalpy (kJ					
$mol-1$					

Table: Atomic and physical properties of halogens

Electronic configuration

➢ Halogen have 7 electrons in their outermost shell which is one electron sh<mark>ort (ns² np⁵) of the next noble gas.</mark>

Atomic and ionic radius

- \triangleright The halogens have the smallest atomic radius in their respective periods because of maximum Zeff.
- ➢ Atomic and ionic radii increase from F to I because of increase in number of quantum shells.

Ionisation enthalpy

- \triangleright The halogens have almost no tendency to lose any electron. They show high ionisation enthalpy.
- \triangleright Due to increase in atomic size, ionisation enthalpy decrease as we move down the group.

Electron gain enthalpy

- \triangleright Halogens have maximum -ve electron gain enthalpy in the corresponding periods. Because the atoms of these elements have only one e⁻ less than stable noble gas configurations.
- \triangleright Electron gain enthalpy of the elements of the group becomes less -ve as we move down the group.
- \triangleright The -ve electron gain enthalpy of F is less than that of CI; due to small size of F-atom.
- \triangleright Consequently, there are strong inter-electronic repulsions in the relatively small 2p orbitals of F and thus, the incoming electron does not experience much attraction.

Electronegativity

- \triangleright Halogens have very high electronegativity. The electronegativity decreases down the group.
- \triangleright F is the most electronegative element nn the periodic table.

Physical properties

- \triangleright Halogens display variations in their physical properties.
- \triangleright F and CI are gases, Br is a liquid and I is a solid.
- \triangleright Their m.p. and b.p. gradually increase with the atomic number.
- \triangleright All group-17 elements are coloured; due to absorption of radiations in visible region. Due to this outer electrons get excited to the higher energy level.
- \triangleright They display different colours by absorbing different quanta of radiation,. E.g., F_2 has yellow, Cl_2 has greenish yellow, Br_2 has red and I_2 has violet colour.
- \triangleright F and CI react with water. Br and I are sparingly soluble in water but are soluble in various organic solvents like CHCl₃, CCl₄, CS₂ and hydrocarbons to give coloured solutions.
- \triangleright F₂ have lower enthalpy of dissociation as compared to that of Cl₂ whereas X-X bond dissociation enthalpies from chlorine onwards show following trend: $CI - CI > Br - Br > I - I$.
- \triangleright A reason for this anomaly is the relatively large electron-electron repulsion among the lone pairs in F_2 molecule where they are much closer to each other than in case of $Cl₂$.

Chemical properties

Oxidation states and trends in chemical reactivity:

 \triangleright All the halogens exhibit -1 oxidation state. However, chlorine, bromine and iodine exhibit $+ 1$, $+ 3$, $+ 5$ and $+ 7$ oxidation states also as explained below:

- \triangleright The higher oxidation states of CI, Br and I are realised mainly when the halogens are in combination with the small and highly electronegative F and O-atoms. Examples: in interhalogens, oxides and oxoacids.
- \triangleright The oxidation states of $+4$ and $+6$ occur in the oxides and oxoacids of Cl and Br.
- \triangleright The F-atom has no d-orbitals in its valence shell and so cannot expand its octet.
- \triangleright Being the most electronegative, it exhibits only -1 oxidation state.
- \triangleright All the halogens are highly reactive. They form halides on reacting with metals and non-metals.
- \triangleright The reactivity of the halogens decreases as we move down the group. They readily accept an electron to complete octet, it is the reason for the strong oxidising nature of halogens.
- \triangleright F₂ is the strongest oxidising halogen and it oxidises other halide ions in solution or even in the solid phase.
- \triangleright A halogen oxidises halide ions of higher atomic number.

$$
F_2 + 2X \rightarrow 2F^+ + X_2 \ (X = \text{Cl}, \text{Br or I})
$$

$$
Cl_2 + 2X \rightarrow 2Cl^- + X_2 \ (X = \text{Br or I})
$$

$$
Br_2 + 2I^- \rightarrow 2Br^- + I_2
$$

 \triangleright The decreasing oxidising ability of the halogens in aqueous solution as we move down the group is evident from their standard electrode potentials which are dependent on the parameters shown below:

$$
\frac{1}{2}X_2(g) \xrightarrow{1/2\;\Delta_{diss}H^\ominus} X(g) \xrightarrow{ \Delta_{eg}H^\ominus} X^-(g) \xrightarrow{ \Delta_{hyd}H^\ominus} X^-(aq)
$$

 \triangleright Oxidizing power of halogens:

2F₂(g) + 2H₂O (l) → 4H+ (aq) + 4F⁻ (aq) + O₂(g) $X_2(g)$ + H₂O (I) \rightarrow H<mark>X (ag)</mark>+ HOX (ag) (here X is Cl/Br) 4l⁻ (aq)+ 4H⁺ (a<mark>q)+ O₂ (g) → 2l₂ (s) + 2H₂O (l)</mark>

Anomalous behaviour of fluorine

- \triangleright For F ionisation enthalpy, electrode potentials and electronegativity are higher than expected from the trends set by other halogens.
- \triangleright The ionic and covalent radii, m.p. and b.p., bond dissociation enthalpy and enthalpy of electron gain are much lower than expected.
- \triangleright The irregular behaviour of fluorine is due to its small size, highest electronegativity, low F-F bond dissociation enthalpy, and nonavailability of d-orbitals in valence shell.
- \triangleright Most of the reactions of fluorine are exothermic.
- ➢ HF is in liquid state because of strong H-bonding. H-bond is formed in HF due to small size and high due to small size and high electronegativity of F.

1. Reactivity towards hydrogen:

 \triangleright All halogens react with hydrogen to give H-X but affinity for hydrogen decreases as we move from fluorine to iodine.

- \triangleright H-X dissolves in H₂O to form hydrohalic acids.
- \triangleright The strength of halo acids is as follows:

HF < HCl < HBr < HI

 \triangleright The stability of these halides decreases as we move down the group due to decrease in (H–X) bond dissociation enthalpy in the order:

H–F > H–Cl > H–Br > H–I

2. Reactivity towards oxygen:

- \triangleright Halogens form many oxides with oxygen but almost all are unstable.
- \triangleright Fluorine forms two oxides OF₂ and O₂F₂. At 298 K OF₂ is thermally stable.
- ➢ These oxides are essentially oxygen fluorides because of the electronegativity of fluorine is higher than oxygen. Both are strong fluorinating agents. O₂F₂ oxidises Pu to PuF₆.
- \triangleright Cl, Br and I form oxides in which the oxidation states of these halogens range from $+1$ to $+7$.
- \triangleright The decreasing order of stability of halo-oxides:

 $I > Cl > Br$

- \triangleright The oxides of iodine are more stable due to greater polarisability of bond between iodine and oxygen.
- \triangleright There is multiple bond formation take place between CI and oxygen due to accessibility of d–orbitals. It makes them more stable.
- \triangleright Br lacks both the characteristics hence stability of oxides of bromine is very less.
- \triangleright Chlorine oxides such as Cl₂O, Cl₂O₂, Cl₂O₆ and Cl₂O₇ are highly reactive oxidising agents and tend to explode.
- \triangleright Chlorine dioxide is used as a bleaching agent for paper pulp a, textiles and also in water treatment.
- \triangleright The bromine oxides exist only at low temperatures. Example: Br₂O, $BfO₂$, BrO₃ are the least stable halogen oxides. They are very powerful oxidising agents.
- \triangleright The iodine oxides such as I_2O_4 , I_2O_5 , I_2O_7 are insoluble solids and decompose on heating.
- \triangleright I_2O_5 is a very good oxidising agent and is used in the estimation of CO.

3. Reactivity towards metals:

 \triangleright Halogens and metals give metal halides. Example, Br₂ reacts with Mg to give magnesium bromide.

$$
Mg(s) + Br_2(l) \rightarrow MgBr_2(s)
$$

 \triangleright The order of ionic character of the halides is as follows:

 $MF > MC$ > MBr > ML

Here M = monovalent metal.

- \triangleright The halides with higher oxidation state are covalent than the one with lower oxidation state. Example: SbCl₅, SnCl₄, PbCl₄, and UF₆ are more covalent than $SnCl₂, PbCl₂, SbCl₃$ and UF₄ respectively.
- 4. Reactivity of halogens towards other halogens:
	- \triangleright Halogens combine with themselves to form a number of compounds termed inter-halogens of the types XX ', XX₃', XX₅' and XX₇' here X is a larger size halogen and X′ is smaller size halogen.

Chlorine

 \triangleright In 1774 Chlorine was discovered by Scheele by observing the reaction of HCl with $MnO₂$.

Preparation

- \triangleright It is prepared by the following methods:
- 1. By heating $MnO₂$ with conc. HCl.

 $MnO_2 + 4HCl \rightarrow MnCl_2 + Cl_2 + 2H_2O$

 4 NaCl + MnO₂ + 4 H₂SO₄ \rightarrow MnCl₂ + 4NaHSO₄ + 2H₂O + Cl₂

2. By the action of hydrochloric acid on KMnO4.

 $2KMnO_4 + 16HCl \rightarrow 2KCl + 2MnCl_2 + 8H_2O + 5Cl_2$

Manufacture of chlorine

- 1. Deacon's process:
- \triangleright Chlorine is manufactured by oxidation of HCl gas through atmospheric oxygen in the presence of a catalyst i.e. $CuCl₂$ at 723 K.

$$
4HCl + O_2 \xrightarrow{CuCl_2} 2Cl_2 + 2H_2O
$$

- 2. Electrolytic process:
- \triangleright Chlorine is obtained by the electrolysis of concentrated NaCl solution known as brine. Chlorine is liberated at anode.

Properties

- \triangleright It is a greenish yellow gas with pungent and suffocating odour.
- \triangleright It is liquefied into greenish yellow solution. It is soluble in water.
- \triangleright Chlorine reacts with following metals and non-metals to form chlorides-

 $2\text{Al} + 3\text{Cl}_2 \rightarrow 2\text{AlCl}_3$; $P_4 + 6Cl_2 \rightarrow 4PCl_3$ $2Na + Cl_2 \rightarrow 2NaCl$; $S_8 + 4Cl_2 \rightarrow 4S_2Cl_2$ $2Fe + 3Cl₂ \rightarrow 2FeCl₃;$

 \triangleright Chloride reacts with compounds containing hydrogen to form HCl.

$$
H_2 + Cl_2 \rightarrow 2HCl
$$

\n
$$
H_2S + Cl_2 \rightarrow 2HCl + S
$$

\n
$$
C_{10}H_{16} + 8Cl_2 \rightarrow 16HCl + 10Cl
$$

➢ With cold bases chlorine produces a mixture of chloride and hypochlorite but with hot bases produces chloride and chlorate.

$$
2NaOH + Cl_2 \rightarrow NaCl + NaOCl + H_2O
$$

(Cold and dil.)

6NaOH + $3C_2$ \rightarrow 5NaCl + NaClO₃ + $3H_2O$ (Hot and concentrate)

 \triangleright Chlorine gives bleaching powder reacting with dry slaked lime.

 $2Ca(OH)_2 + 2Cl_2 \rightarrow Ca(OCl)_2 + CaCl_2 + 2H_2O$

The composition of bleaching powder is $Ca(OCl)_2$.CaCl₂ .Ca(OH)₂ .2H₂O.

 \triangleright Chlorine reacts with hydrocarbons and gives substitution products with saturated hydrocarbons and addition products with unsaturated hydrocarbons. Example:

$$
CH_4 + Cl_2 \xrightarrow{UV} CH_3Cl + HCl
$$

Method

$$
C_2H_4 + Cl_2 \xrightarrow{Room \text{ temp.}} C_2H_4Cl_2
$$

Ethene 1,2-Dichloroethane

- \triangleright The yellow colour of chlorine water fades on standing for long-time due to the formation of HCl and HOCl.
- ➢ Hypochlorous acid so formed, gives nascent oxygen which is responsible for oxidising and bleaching properties of chlorine.
- \triangleright Chlorine oxidises ferrous into ferric and sulphite into sulphate.
- \triangleright Chlorine oxidises $SO₂$ to SO₃ and I₂ to iodate.
- \triangleright In the presence of water they form H₂SO₄ and iodic acid respectively.

 $2FeSO₄ + H₂SO₄ + Cl₂ \rightarrow Fe₂(SO₄)₃ + 2HCl$ $Na_2SO_3 + Cl_2 + H_2O \rightarrow Na_2SO_4 + 2HCl$ SO_2 + 2H₂O + Cl₂ \rightarrow H₂SO₄ + 2HCl I_2 + 6H₂O + 5Cl₂ \rightarrow 2HIO₃ + 10HCl

 \triangleright Chlorine show bleaching action due to oxidation. The organic matter is bleached in the presence of moisture. Bleaching effect of chlorine is permanent.

$$
Cl2 + H2O → 2HCl + O
$$

Coloured substance + O → Colourless substance

- 1. It is used for bleaching the wood pulp which is required for the manufacture of paper and rayon), bleaching cotton and textiles.
- 2. It is used for in the extraction of gold and platinum.
- 3. It is used for in the manufacture of dyes, drugs and organic compounds such as CCl₄, CHCl₃, DDT, refrigerants, etc.
- 4. It is used for in sterilising drinking water.
- 5. It is used for preparation of poisonous gases such as phosgene $(COCI₂)$, tear gas (CCl₃NO₂), mustard gas (ClCH₂CH₂SCH₂CH₂Cl).

Hydrogen Chloride

 \triangleright Glauber prepared HCl in 1648 by heating NaCl with conc. H₂SO₄.

Preparation

 \triangleright HCl can be made by heating NaCl with conc. H₂SO₄.

$$
NaCl + H_2SO_4 \xrightarrow{420K} NaHSO_4 + HCl
$$

$$
NaHSO_4 + NaCl \xrightarrow{823K} Na_2SO_4 + HCl
$$

Properties

- \triangleright It is a colourless gas with pungent smell.
- \triangleright It is easily liquefied to a colourless liquid and freezes to a white crystalline solid. HCl is soluble in water.

$$
HCl(g) + H_2O(1) \rightarrow H_3O^+(aq) + Cl^-(aq) \quad K_a = 10^7
$$

 \triangleright Its aqueous solution is called hydrochloric acid. High Ka indicates that it is a strong acid. HCl reacts with ammonia and gives NH_4Cl .

$$
NH_3 + HCl \rightarrow NH_4Cl
$$

 \triangleright When HCl and conc.HNO₃ are mixed in 3:1, aquaregia is formed which is used for dissolving noble metals, e.g., Au, Pt.

> $Au + 4H^+ + NO_3^- + 4Cl^- \rightarrow AuCl_4^- + NO + 2H_2O$ $3Pt + 16H^+ + 4NO_3^- + 18Cl^- \rightarrow 3PtCl_6^{2-} + 4NO + 8H_2O$

 \triangleright Hydrochloric acid decomposes salts of weak acids, for e.g., carbonates, hydrogen-carbonates, sulphites, etc.

$$
Na2CO3 + 2HCl \rightarrow 2NaCl + H2O + CO2
$$

Na_{HCO₃} + HCl \rightarrow NaCl + H₂O + CO₂

$$
Na2SO3 + 2HCl \rightarrow 2NaCl + H2O + SO2
$$

Uses

- \triangleright It is used to produce chlorine, NH₄Cl and glucose.
- \triangleright It is used for removing glue from the bones.
- \triangleright It is used in medicine and as a laboratory reagent.

Oxoacids of Halogens

- \triangleright As being electronegativity with small size, fluorine forms an oxoacid, HOF (hypofluorous acid).
- \triangleright The other halogens form several oxoacids. They are stable in aqueous solutions or in their salts.

Table: Oxoacids of halogens

Interhalogen compounds

- ➢ Interhalogen compounds can be preparedby the reaction of different halogens.
- \triangleright They can be assigned general compositions as XX', XX₃', XX₅' and XX₇' Here $X =$ halogen of larger size

X′ = halogen of smaller size.

 \triangleright As the ratio between radii of X and X' increases, the number of atoms per molecule also increases. Thus, iodine (VII) fluoride should have maximum number of atoms as the ratio of radii between I and F should be maximum and its formula is IF₇.

Preparation

- \triangleright The inter-halogen compounds can be prepared by the direct combination or by the action of halogen on lower interhalogen compounds.
- \triangleright The product formed depends upon some specific conditions; As follows:

 $Cl_2 + F_2 \xrightarrow{437K} 2ClF$; $\begin{aligned} \mathrm{I}_2 + 3\mathrm{Cl}_2 &\rightarrow 2\mathrm{ICl}_3 \\ &\stackrel{\textrm{(excess)}}{\rule{0pt}{0.5pt}} \end{aligned}$ (equal volume) $\text{Cl}_2 + 3\text{F}_2 \xrightarrow{573\text{K}} 2\text{ClF}_3;$
(excess) $\text{Br}_2 + 3\text{F}_2 \rightarrow 2\text{BrF}_3$ (diluted with water) $\text{Br}_2 + \underset{\text{(excess)}}{\mathbf{5}\mathbf{F}_2} \rightarrow 2\text{BrF}_5$ $I_2 + Cl_2 \rightarrow 2ICl;$
(equimolar)

Table: Some Properties of Interhalogen Compounds

- \triangleright These are diamagnetic in nature and covalent too. They are volatile solids or liquids at 298 K temperature except CIF which is a gas.
- \triangleright The interhalogen compounds are very reactive than halogens. Due to the weakness of X–X′ bond in interhalogens as compare to X–X bond in halogens.
- \triangleright All these undergo hydrolysis giving halide ion derived from the smaller halogen and a hypohalite, halite, halate and perhalate anion derived from the larger halogen.

$$
XX' + H_2O \rightarrow HX' + HOX
$$

 \triangleright The XX₃ compounds show the bent 'T' shape, XX₅ compounds square pyramidal and $IF₇$ has pentagonal bipyramidal structures according to VSEPR theory.

Uses

 \triangleright These compounds can be used as non-aqueous solvents.

➢ Interhalogen compounds are very useful fluorinating agents. Trifluoro chlorine and Trifluoro bromine are used for the production of UF_6 in the enrichment of ^{235}U .

```
U(s) + 3CIF_3 (I) \rightarrow UF_6(g) + 3CIF(g)
```
Group 18 elements

- ➢ Group 18 consists of these elements: He, Ne, Ar, Kr, Xe, Ra and Og.
- \triangleright All these are gases and chemically unreactive.
- \triangleright All these gases except radon and Og occur in the atmosphere.
- \triangleright Their atmospheric abundance in dry air is approximately 1% by volume of which argon is the major constituent.
- \triangleright Xe and Ra are the rarest elements of the group. Ra is obtained as a decay product of ²²⁶Ra.

$$
^{226}_{88}\text{Ra} \rightarrow \, ^{222}_{86}\text{Rn} + ^{4}_{2}\text{He}
$$

≻ Og has been synthetically produced by collision of ²⁴⁹Cf₉₈ atoms and 48 Ca₂₀ ions.

$$
\frac{^{249}}{98}
$$
 Cf + $\frac{^{48}}{20}$ Ca $\longrightarrow \frac{^{294}}{118}$ Og + 3n

- \geq Og atomic number is 118, atomic mass is 294.
- \triangleright Its half-life is 0.7 milliseconds.

Table: Atomic and Physical Properties of Group 18 Elements

Electronic Configuration

- All noble gases have general electronic configuration ns² np⁶.
- \triangleright Many of the properties of noble gases including their inactive nature are ascribed to their closed shell structures.

Ionisation Enthalpy

- \triangleright These gases shoe high ionisation enthalpy.
- \triangleright It decreases as we move down the group with increase in atomic size.

Atomic Radii

 \triangleright Atomic radii increase as we move down the group with increase in atomic number.

Electron Gain Enthalpy

 \triangleright Since noble gases have complete octet, they have no tendency to accept the electron, have large +ive values of electron gain enthalpy.

Physical Properties

- ➢ All the noble gases are monoatomic, colourless. They are odourless and tasteless.
- \triangleright They are sparingly soluble in water.
- \triangleright They have very low m.p. and b.p. owing to weak dispersion forces.

 \triangleright He has an unusual property of diffusing through most commonly used laboratory materials such as rubber, glass or plastics.

Chemical Properties

- \triangleright The noble gases are least reactive.
- \triangleright Their inertness to chemical reactivity is credited to these reasons:
	- 1. The noble gases except He $(1s^2)$ have fully filled ns^2np^6 electronic configuration.
	- 2. They have high ionisation enthalpy and more +ive electron gain enthalpy.
- \triangleright The compounds of krypton are fewer. Only the difluoride like KrF₂ has been known.
- \triangleright Compounds of Ra have not been isolated but only identified i.e. RnF₂ by radiotracer technique
- (a) Xenon-fluorine compounds
- \triangleright Xe forms binary fluorides for example- XeF₂, XeF₄ and XeF₆ by the direct reaction of elements under appropriate experimental conditions.

 \triangleright The interaction of XeF₄ and O₂F₂ gives XeF₆ at 143K.

$$
\mathsf{XeF}_4 + \mathsf{O}_2\mathsf{F}_2 \rightarrow \mathsf{XeF}_6 + \mathsf{O}_2
$$

- \triangleright XeF₂, XeF₄ and XeF₆ are colourless crystalline solids and sublime easily at 298 K. They are powerful fluorinating agents.
- \triangleright They are hydrolysed even by water. Example:

$$
2XeF_2
$$
 (s) + $2H_2O$ (l) \rightarrow 2Xe (g) + $4HF$ (aq) + O₂ (g)

 \triangleright The structures of the xenon fluorides can be deduced from VSEPR. XeF₂ have linear and XeF₄ have square planar structure. XeF₆ has seven e pairs and would, thus, have a distorted Oh structure as found experimentally in the gas phase.

➢ Xenon fluorides react with F - acceptors to form cationic species and fluoride ion donors to form fluoro-anions.

 $XeF_2 + PF_5 \rightarrow [XeF]$ ^{*} [PF₆]^{*}; $XeF_4 + SbF_5 \rightarrow [XeF_3]$ ^{*} [SbF₆]^{*} $XeF_6 + MF \rightarrow M^{\dagger}$ [XeF₇]⁻ (M = Na, K, Rb or Cs)

(b) **Xenon-oxygen compounds**

 \triangleright Hydrolysis of hexafluoro xenon and tetrafluoro xenon with H₂O gives XeO3.

 $6XeF_4 + 12 H_2O \rightarrow 4Xe + 2XeO_3 + 24 HF + 3 O_2$ $XeF_6 + 3 H_2O \rightarrow XeO_3 + 6 HF$

 \triangleright Fractional hydrolysis of XeF₆ gives XeOF₄ and XeO₂F₂.

 $XeF_6 + H_2O \rightarrow XeOF_4 + 2 HF$ $XeF_6 + 2 H_2O \rightarrow XeO_2F_2 + 4HF$

(c) Distorted octahedral (e) Pyramidal (d) Square pyramidal Figure: The structures of (a) XeF_2 (b) XeF_4 (c) XeF_6 (d) $XeOF_4$ and (e) XeO_3

- \triangleright Xenon trioxide is a colourless explosive solid and it has a pyramidal structure.
- \triangleright XeOF₄ is a colourless volatile liquid. It has a square pyramidal structure.

 Uses

- ➢ Xenon is used in blowing balloons for meteorological observations.
- \triangleright It is also used in nuclear reactors which are gas-cooled. Liquid He finds use as cryogenic agent for carrying out various experiments at low temperatures.
- \triangleright It is used to produce and sustain powerful superconducting magnets which form an essential part of m Magnetic Resonance Imaging systems for clinical diagnosis.
- \triangleright It is used as a diluent for oxygen in diving apparatus as it is very less soluble in blood.
- ➢ For advertisement display purposes neon is used in fluorescent bulbs.
- \triangleright Ne bulbs are used in green houses.
- \triangleright Argon is used mainly to provide an inert atmosphere in high temperature metallurgical processes and for filling electric bulbs.
- \triangleright They are used in light bulbs designed for special purposes.